
Sentiment Analysis Using Convolutional Neural
Networks Generated by Neuroevolution

José Clemente Hernández-Hernández, Marcela Quiroz-Castellanos,
Guillermo de Jesús Hoyos-Rivera , Efrén Mezura-Montes

Universidad de Veracruz,
Instituto de Investigaciones en Inteligencia Artificial,

México

{maquiroz,ghoyos,emezura}@uv.mx,
jclementehdzhdz@gmail.com

Abstract. Sentiment analysis is a sub-field of Natural Language Processing
which is focused on determine what is the sentiment expressed in an opinion.
In this paper we propose a new neuroevolution algorithm, called Deep
NeuroEvolution of Weights and Topologies (DeepNEWT), which is based on
a genetic algorithm and is used to evolve convolutional neural networks, to
classify text in different polarity sentiments. The proposed algorithm, instead
of using backpropagation on several epochs as training mechanism, as other
proposals do, implements a plain mutation process adding random values to the
current weights and bias. Moreover, the algorithm searches, through mutation and
crossover operators, the best topology structure of the networks during a number
of generations. This was executed using text data transformed with Word2Vec.
The obtained results when varying the number of parents chosen for crossover
and different mutation rates are encouraging.

Keywords: Neuroevolution, sentiment snalysis, evolutionary computing,
neural networks.

1 Introduction

Sentiment Analysis (SA) is the field of study of the Natural Language Processing
(NLP) which explores text data to detect the expressed sentiment [7]. There are
several research works in SA, which focus on detecting the sentiment on text using
Machine Learning (ML) [13], and, in recent years, due to the incorporation of Deep
Learning (DL), Convolutional Neural Networks (CNN) have been used to improve the
performance over the traditional ML classifiers [16].

Usually, the creation of a CNN architecture is handcrafted, but tuning them is not
an easy task. For this reason, in this paper we propose to use Neuroevolution (NE), a
technique that replaces the architecture engineering, doing this process automatically
trough Evolutionary Computing (EC) algorithms [11]. The proposed approach is a
Genetic Algorithm (GA), which combines interesting features of previous works in
the field of Computer Vision (CV) [14].

77

ISSN 1870-4069

Research in Computing Science 152(5), 2023pp. 77–84; rec. 2022-08-19; acc. 2022-10-12

Table 1. Similarity numbers and their corresponding non-linear activation function and
pooling operations.

Similarity number Non-linear function Pooling operation
1 Sigm Max
2 Sigm Avg
3 Tanh Max
4 Tanh Avg
5 ReLU Max
6 ReLU Avg
7 PReLU Max
8 PReLU Avg

To search for CNNs, and the well known NeuroEvolution of Augmenting
Topologies (NEAT) algorithm [12] to evolve fully-connected neural networks (FCNN).
Our proposal involves crossover operators to share architecture elements between
networks, and a mutation operator in a two-phase way, where new variations
of the architectures can be inserted, and weights and bias are trained without
using backpropagation.

The proposed experiments include variations in the parameters set to analyze the
performance of the algorithm. Opinions used to test the algorithm are transformed using
a Word2Vec [8] model. The rest of this paper is organized as follows: in Section 2
previous works about SA and NE are presented, while in Section 3 the proposed
algorithm is described in detail. In Sections 4 and 5, the experimental design and the
obtained results of the proposed algorithm are shown, respectively. Finally, in Section 6
conclusions and future work are drawn.

2 Related Work

CNNs have been used to automatically extract features from images, and to do different
tasks as segmentation or classification [6]. In SA this kind of neural networks are used
to classify transformed text, as in [5], where an experimental study was carried out to
label movie reviews in different polarity sentiments, demonstrating that CNNs can be
used to tackle the SA task.

The CNN created in the previous work, was used to classify tweets written in
Spanish [9], where the text was transformed using Word2Vec model. CNNs were
handcrafted created. Concerning NE and SA, FCNNs were also used to do SA in text.
Using text written in Polish, an automatic system was created for pre-processing data
and classify text using NEAT [10].

In [4], a new representation of text was created, and then, NEAT was used to
create small versions of fully-connected neural networks to classify tweets written
in Mexican Spanish. In these two researches, only FCNNs were evolved and used
traditional techniques instead of DL approaches.

On the other hand, NE was also implemented to generate CNNs, which were used
for SA. In [3], using a NEAT-based GA, CNNs were generated to classify movie reviews
and in [1], based on a Differential Evolution algorithm, CNNs were evolved to classify
text in Arabic.

78

José Clemente Hernández-Hernández, Marcela Quiroz-Castellanos, et al.

Research in Computing Science 152(5), 2023 ISSN 1870-4069

Fig. 1. Element crossover in the CNP blocks; each CNP block has its respective elements: a
non-linear activation function Ni, the pooling filter and its operation Poi, and the similarity
number; they are divided by a red color line.

An interesting feature of the use of NE algorithms to evolve CNNs, is that for each
generation or iteration, a step is executed to run a number of epochs a backpropagation
algorithm. Other algorithms that were used, this time in the field of CV, are described
in [2, 14, 15].

3 Deep NeuroEvolution of Weights and Topologies

Deep NeuroEvolution of Weights and Topologies (DeepNEWT), is a GA algorithm
created to generate the architecture and weights of a CNN to classify text without
using the backpropagation algorithm. Since DeepNEWT is a GA, some elements are
introduced in its main process: (1) it uses a direct codification of potential solutions,
(2) it allows sharing and mutating elements within solutions, (3) it admits the change
of activation functions and pooling operations, (4) it searches layer similarities between
solutions, (5) it trains connection weights and bias through a simple addition of random
values without using backpropagation, and (6) it allows to use the CNN created in [5].

DeepNEWT uses a block-chained direct encoding, where convolutional, non-linear
activation function, pooling, and fully-connected layers are reserved. A potential
solution has three different blocks: (1) a convolutional, non-linear activation function,
and pooling, called CNP, (2) a convolutional layer extracted from [5], called last-CNP
layer, and (3) a fully-connected layer, called FC. DeepNEWT individuals are created
randomly subject to certain parameters.

Each CNP block has z × z′ convolutional filters and each filter has a length of
v×w, z is the number of input channels and z′ is the number of feature maps or output
channels. The CNP block also has a non-linear activation function, a pooling operation
with its respective filter with dimensions s × t and a similarity number. A potential
solution of a CNN can have n CNP blocks located one after another. A CNP block
generates an output of n′′ ×m′′ × z′ given an input of n×m× z.

Based on the historical markings in [12] and the crossover operator in [14], a novel
element is introduced in this algorithm: the ease of sharing elements between solutions
through similarities of the CNP blocks. A similarity number is given by the union of a
non-linear activation function and a pooling operation. The similarity numbers in each
combination of functions are shown in Table 1.

79

Sentiment Analysis Using Convolutional Neural Networks Generated by Neuroevolution

Research in Computing Science 152(5), 2023ISSN 1870-4069

Table 2. Mutation processes with their corresponding sequential number (S.), and their moment;
symbol +/- means that an element will reduce or increment its size or length.

CNP last-CNP
Mutation Moment S. (1st, 2nd) Moment S. (1st, 2nd) Type

No. of conv. Filters - - Both 1 +/- 1
No. of output feature maps Both 2 Both 2 +/- random

Activation function Both 3, 6 Both 3, 6 Random
Conv. Filters length Both 4, 7 Both 4, 7 +/- 1

W , b values Both 5, 8 Both 5, 8 Random sum
No. of CNP blocks 2nd 3 - - +/- 1
Pooling operation 2nd 4 2nd 4 Random

Pooling filter length. 2nd 5 - - +/- 1

The so-called last-CNP layer, located after n CNP blocks, has different
convolutional filters lengths of size vi × w, where w = m′′, which is a value
corresponding to an output generated by a CNP block or the input to the CNN. The
last-CNP layer, given a convolutional filter fi, generates an output of dimensions
n′ × 1 × z′. Later, a non-linear activation function is computed, and then a pooling
operation is also executed with its respective pooling filter.

A pooling filter pi in the last-CNP has dimensions n′×1, and the pooling operation
is computed z′ times over the convolutional operation output. The pooling operation
generates an output of 1 × 1 × z′ size. The final output of a last-CNP layer is a
concatenated list of values of the pooling filters pi.

The last element of the CNNs is a FC layer, located after the last-CNP. This layer
has |pi|z′ number of input neurons and, for this research work, 3 output neurons
corresponding to the polarity sentiments: negative, neutral and positive. Before the
algorithm executes crossover and mutation operators, a deterministic tournament is
carried out in the current population P . It selects l individuals without replacement,
in which, only the best individual becomes a part of a set Ps for crossover.

Such a process is done T times. After computing the DeepNEWT crossover
operator, a set Pc is created with the recombined individuals. Three crossover processes
are computed: (1) with CNP blocks, (2) in the last-CNP layer, and (3) in the FC layer.
Crossover is applied to two parents, P1 and P2, to generate two offspring, H1 and H2.
The similarity numbers of two parent solutions P1 and P2 are considered in the CNP
blocks crossover process.

To compute it, first the same similarity numbers of the CNP blocks in both
individuals must be identified. If there is more than one occurrence of the same
similarity number in an individual, a CNP block is selected randomly. When the
similarity numbers are detected, only the pooling filter and operation is changed with
the other parent where the similarity number matches. The procedure of the CNP blocks
crossover process is shown in Figure 1.

With respect to the last-CNP crossover operator, only the pooling operator, without
the filter, is shared and, in the FC layer crossover, the non-linear activation function
is transferred. A novel mechanism is introduced in the mutation operator, where two
sequentially executed moments are involved.

80

José Clemente Hernández-Hernández, Marcela Quiroz-Castellanos, et al.

Research in Computing Science 152(5), 2023 ISSN 1870-4069

Algorithm 1: Deep NeuroEvolution of Weights and Topologies
Data: Continue and discrete parameter limits
Result: Best CNN
Initialize N CNN in the population P ;
Initialize ϕa and ϕb;
Compute CNN fitness;
while max generations not reached do

Ps ← select T elements from P by tournament;
Pc ← crossover elements from Ps ;
Pa ← mutate individuals from Pc with probability ϕa and Ma set;
Pb ← mutate individuals from Pa with probability ϕb and Mb set ;
P t+1 ← best individuals from P t ∪ Pc ∪ Pa ∪ Pb are the population of the new generation;

end

Both moments have a set, Ma and Mb, respectively, of mutations that may be run
with probability ϕa, for the first moment, and, with a probability ϕb, for the second
moment, subject to 0 < ϕb < ϕa < 1. The individuals from Pc set can be subject to
modifications (1) at both moments, (2) only at the first moment, or (3) none of them. If
an individual is modified at the first moment, the solution is now part of the Pa set, and
such solutions can be modified in the second moment.

On the other hand, if a solution from Pa is modified at the second moment, the
solution becomes part of the Pb set, with the rest of solutions modified at the second
moment. A mutation modification has a sequential number, and it indicates when the
modification will be executed. A moment is a set of mutations that modify solutions in a
sequential way. A modification mi from a set M , as mentioned above, has a probability
ϕ of happening, depending on the execution moment.

If an individual is modified at mi, the resulting individual from this modification
can be modified again at the next mutation mi+1, and so on. When an individual is
modified at a mutation moment, the set Pa or Pb gets an individual after such moment.
The modifications by mutation in the CNP blocks and last-CNP layer, including the
weights W and bias b updating, are shown in Table 2. With respect to the FC layer, only
the weights W , and bias b, can be modified by the mutation mechanisms.

It is important to mention that all modifications which include random variations or
values, are carried out using an either, discrete or continue, random uniform distribution.
Finally, the generation of a new population, P t+1, is done by the union that involves the
current population, P t, the individuals after crossover, Pc, and the modified individuals
in the first and second moments, Pa and Pb. After this union P t ∪ Pc ∪ Pa ∪ Pb, only
the best individuals are selected to be part of the new population, P t+1. The complete
process of DeepNEWT is described in Algorithm 1.

4 Experimental Settings

Tweets used in this research work were manually labelled in three different polarity
sentiments: positive, negative and neutral and all classes are balanced. The total of
tweets is 150 and they belong to the Mexican political context. All tweets were
transformed using a Word2Vec model trained from scratch. The model was trained with
the Gensim 3.8 Python library1.

1 radimrehurek.com/gensim/

81

Sentiment Analysis Using Convolutional Neural Networks Generated by Neuroevolution

Research in Computing Science 152(5), 2023ISSN 1870-4069

Table 3. Experiment parameters and their respective final accuracy results.

Exp. T ϕa ϕb Accuracy Exp. T ϕa ϕb Accuracy Exp. T ϕa ϕb Accuracy

A1 6 0.2 0.1 0.4733 B1 12 0.2 0.1 0.5067 C1 18 0.2 0.1 0.4867

A2 6 0.4 0.1 0.4933 B2 12 0.4 0.1 0.4733 C2 18 0.4 0.1 0.5133

A3 6 0.4 0.2 0.4667 B3 12 0.4 0.2 0.4733 C3 18 0.4 0.2 0.52

A4 6 0.6 0.1 0.48 B4 12 0.6 0.1 0.4667 C4 18 0.6 0.1 0.5067

A5 6 0.6 0.2 0.4667 B5 12 0.6 0.2 0.4867 C5 18 0.6 0.2 0.5067

A6 6 0.6 0.4 0.4933 B6 12 0.6 0.4 0.4533 C6 18 0.6 0.4 0.4733

Each word is given as input at the Word2Vec model, being the output a vector with
continuous values. This vector has a dimensionality of 60 elements and all word vector
were trained with C-BOW. Vector words of tweets are allocated in the center of a matrix
according to the row axis. The matrix is padded with zeroes if necessary. A 60 × 60
matrix is the generated continuous representation of a tweet.

Different experiments were conducted to test the DeepNEWT performance for SA
in tweets by using different number of selected parents for crossover T and different
mutation probability values, ϕa and ϕb, for both moments, respectively. Selected values
of the parameters are set to visualize the performance difference of the algorithm. A
single run per configuration was carried out.

This is because of the computational cost required by each run (about 12 hours
using 10,000 tweets). As default parameters, 100 generations and 20 individuals were
set to run the experiments. The solutions in DeepNEWT have parameter limits that
are necessary to consider. The number of CNP blocks is between [0, 5], the number of
output channels in CNP blocks and last-CNP layers is between [10, 50] and the size of
the convolutional and pooling filters is between [3, 6]. Fitness function of the algorithm
is the accuracy of the data set transformed with Word2Vec.

5 Results and Discussion

Table 3 includes the obtained results with their associated parameters. Figure 2 has the
convergence plot for each experiment (A, B and C), adding an average convergence
plot. With respect to the achieved accuracy, in the experiments with 18 selected parents
(C experiments), in 4 out of 6 experiments reached more than 50% accuracy; the highest
obtained accuracy is 52% with ϕa = 40% and ϕb = 20%.

All the experiments with 6 selected parents (A experiments), do not exceed 50%
accuracy, but the average convergence plot (Figure 6) indicates that the experiments
with 6 selected parents are better than those experiments with 12 selected parents (B
experiments). The experiments with 12 selected parents have a slower convergence with
respect to the shown by those experiments with 6 and 18 selected parents.

On the other hand, in the 18 selected parents experiments, the algorithm produces,
with respect to the average convergence, better accuracy than all other experiments. In
three cases (experiments C2, C3 and C5) the convergence was better so as to reach an
accuracy higher than 50% after 80 generations.

82

José Clemente Hernández-Hernández, Marcela Quiroz-Castellanos, et al.

Research in Computing Science 152(5), 2023 ISSN 1870-4069

Fig. 2. Accuracy convergence with different number of selected parents.

As a conclusion of the experiments, DeepNEWT benefits the most when the number
of selected parents for crossover increases, particularly with mutation values located at
the middle of the ranges tested (i.e., 0.4 and 0.2 for each mutation considered).

6 Conclusions and Future Work

In this research work we proposed a NE algorithm based on a GA, that includes
a mutation mechanism to update the weights and bias of CNNs without using
backpropagation. The algorithm achieved an accuracy of 50%, using a database
transformed with Word2Vec, for a number of generations, combining different
numbers of selected parents and mutation probability values. The proposed algorithm
particularly improved its performance with larger sets of parents selected for crossover
and mutation values around 0.4 and 0.2.

The future work includes: (1) running more experiments with different number of
selected parents and also with more probability values, (2) performing experiments
without considering the 0 < ϕb < ϕa < 1 condition, (3) considering the CNN
parameter number besides accuracy, to also search for the simplest structure, (4)
running experiments using another pre-processing technique such as BERT, and (5)
implementing other kinds of mutation over the weights and bias.

Acknowledgments. The first author thanks the National Council of Science and
Technology (CONACyT), for supporting him through a scholarship to carry out his
MSc studies at Universidad Veracruzana.

83

Sentiment Analysis Using Convolutional Neural Networks Generated by Neuroevolution

Research in Computing Science 152(5), 2023ISSN 1870-4069

References

1. Dahou, A., Elaziz, M. A., Zhou, J., Xiong, S.: Arabic Sentiment Classification Using
Convolutional Neural Network and Differential Evolution Algorithm. Computational
Intelligence and Neuroscience, vol. 2019, pp. 1–16 (2019). DOI: 10.1155/2019/2537689.

2. Desell, T.: Accelerating the Evolution of Convolutional Neural Networks with Node-level
Mutations and Epigenetic Weight Initialization. In: Genetic and Evolutionary Computation
Conference Companion, pp. 157–158 (2018). DOI: 10.1145/3205651.3205792.

3. Dufourq, E., Bassett, B. A.: EDEN: Evolutionary Deep Networks for Efficient Machine
Learning. In: Pattern Recognition Association of South Africa and Robotics and
Mechatronics International Conference, vol. 2018, pp. 110–115 (2017). DOI: 10.1109/Ro
boMech.2017.8261132.

4. Hernández, J. C. H., Montes, E. M., Hoyos-Rivera, G. J., Rodrı́guez-López, O.:
Neuroevolution for Sentiment Analysis in Tweets Written in Mexican Spanish. In: Lecture
Notes in Computer Science, pp. 101–110 (2021). DOI: 10.1007/978-3-030-77004-4 10.

5. Kim, Y.: Convolutional Neural Networks for Sentence Classification. In: Conference on
Empirical Methods in Natural Language Processing, pp. 1746–1751 (2014). DOI: 10.3115/
v1/d14-1181.

6. LeCun, Y., Bengio, Y., Hinton, G.: Deep Learning. Nature, vol. 521, no. 7553, pp. 436–444
(2015). DOI: 10.1038/nature14539.

7. Liu, B.: Sentiment Analysis and Opinion Mining (2012). DOI:
10.2200/S00416ED1V01Y201 204HLT016.

8. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed Representations
Ofwords and Phrases and Their Compositionality. Advances in Neural Information
Processing Systems, pp. 1–9 (2013)

9. Paredes-Valverde, M. A., Colomo-Palacios, R., Salas-Zárate, M. D. P., Valencia-Garcı́a, R.:
Sentiment Analysis in Spanish for Improvement of Products and Services: A deep learning
approach. Scientific Programming, vol. 2017 (2017). DOI: 10.1155/2017/1329281.

10. Sobkowicz, A.: Automatic Sentiment Analysis in Polish Language. Machine Intelligence
and Big Data in Industry, pp. 3–10 (2016).

11. Stanley, K. O., Clune, J., Lehman, J., Miikkulainen, R.: Designing Neural Networks Through
Neuroevolution. Nature Machine Intelligence, vol. 1, no. 1, pp. 24–35 (2019). DOI: 10.1038/
s42256-018-0006-z.

12. Stanley, K. O., Miikkulainen, R.: Evolving Neural Networks Through Augmenting
Topologies. Evolutionary Computation, vol. 10, no. 2, pp. 99–127 (2002). DOI:
10.1162/10636560232016 9811.

13. Sun, S., Luo, C., Chen, J.: A Review of Natural Language Processing Techniques
for Opinion Mining Systems. Information Fusion, vol. 36, pp. 10–25 (2017). DOI:
10.1016/j.inffus.2016.1 0.004.

14. Sun, Y., Xue, B., Zhang, M., Yen, G. G.: Evolving Deep Convolutional Neural Networks for
Image Classification. IEEE Transactions on Evolutionary Computation, vol. 24, no. 2, pp.
394–407 (2020). DOI: 10.1109/TEVC.2019.2916183.

15. Xie, L., Yuille, A.: Genetic CNN. In: IEEE International Conference on Computer Vision,
pp. 1388–1397 (2017) doi: 10.1109/ICCV.2017.154.

16. Yadav, A., Vishwakarma, D. K.: Sentiment Analysis Using Deep Learning Architectures: A
review. Artificial Intelligence Review, vol. 53, no. 6, pp. 4335–4385 (2020) doi: 10.1007/s1
0462-019-09794-5.

84

José Clemente Hernández-Hernández, Marcela Quiroz-Castellanos, et al.

Research in Computing Science 152(5), 2023 ISSN 1870-4069

	Sentiment Analysis Using Convolutional Neural Networks Generated by Neuroevolution

